首页> 外文OA文献 >A non-homogeneous dynamic Bayesian network with a hidden Markov model dependency structure among the temporal data points
【2h】

A non-homogeneous dynamic Bayesian network with a hidden Markov model dependency structure among the temporal data points

机译:时间数据点之间具有隐马尔可夫模型依赖性结构的非均匀动态贝叶斯网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the topical field of systems biology there is considerable interest in learning regulatory networks, and various probabilistic machine learning methods have been proposed to this end. Popular approaches include non-homogeneous dynamicBayesian networks (DBNs), which can be employed to model time-varying regulatory processes. Almost all non-homogeneous DBNs that have been proposed in the literature follow the same paradigm and relax the homogeneity assumption by complementing the standard homogeneous DBN with a multiple changepoint process. Each time series segment defined by two demarcating changepoints is associated with separate interactions, and in this way the regulatory relationships are allowed to vary over time. However, the configuration space of the data segmentations (allocations) that can be obtained by changepoints is restricted. A complementary paradigm is to combine DBNs with mixture models, which allow for free allocations of the data points to mixture components. But this extension of the configuration space comes with the disadvantage that the temporal order of the data points can no longer be taken into account. In this paper I present a novel non-homogeneous DBN model, which can be seen as a consensus between the free allocation mixture DBN model and the changepoint-segmented DBN model. The key idea is to assume that the underlying allocation of the temporal data points follows a Hidden Markov model (HMM). The novel HMM-DBN model takes the temporal structure of the time series into account without putting a restriction onto the configuration space of the data point allocations. I define the novel HMM-DBN model and the competing models such that the regulatory network structure is kept fixed among components, while the network interaction parameters are allowed to vary, and I show how the novel HMM-DBN model can be inferred with Markov Chain Monte Carlo (MCMC) simulations. For the new HMM-DBNmodel I also present two new pairs of MCMC moves, which can be incorporated into the recently proposed allocation sampler for mixture models to improve convergence of the MCMC simulations. In an extensive comparative evaluation study I systematically compare the performance of the proposed HMM-DBN model with the performances of the competing DBN models in a reverse engineering context, where the objective is to learn the structure of a network from temporal network data.
机译:在系统生物学的主题领域中,对学习监管网络有相当大的兴趣,为此已提出了各种概率机器学习方法。流行的方法包括非均匀动态贝叶斯网络(DBN),可用于对时变监管过程进行建模。文献中提出的几乎所有非均质DBN都遵循相同的范式,并通过使用多个变更点过程对标准均质DBN进行补充来放松均质性假设。由两个划分的变更点定义的每个时间段都与单独的交互关联,这样,监管关系就可以随时间变化。但是,可以通过变更点获得的数据分段(分配)的配置空间受到限制。补充范例是将DBN与混合模型结合在一起,这允许将数据点自由分配给混合组件。但是,配置空间的这种扩展带来了以下缺点:无法再考虑数据点的时间顺序。在本文中,我提出了一种新颖的非均匀DBN模型,可以将其视为自由分配混合DBN模型与变更点分段DBN模型之间的共识。关键思想是假设时间数据点的基础分配遵循隐马尔可夫模型(HMM)。新颖的HMM-DBN模型考虑了时间序列的时间结构,而没有限制数据点分配的配置空间。我定义了新颖的HMM-DBN模型和竞争模型,从而使监管网络结构在组件之间保持固定,同时允许网络交互参数发生变化,并且展示了如何使用马尔可夫链推论出新颖的HMM-DBN模型蒙特卡洛(MCMC)模拟。对于新的HMM-DBNmodel,我还介绍了两对新的MCMC移动,可以将其合并到最近提出的混合模型分配采样器中,以改善MCMC模拟的收敛性。在广泛的比较评估研究中,我在反向工程环境中系统地比较了所提出的HMM-DBN模型的性能与竞争DBN模型的性能,其目的是从时态网络数据中学习网络的结构。

著录项

  • 作者

    Grzegorczyk, Marco;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号